Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 387
Filtrar
1.
Biotechnol Bioeng ; 120(12): 3570-3584, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37707439

RESUMO

In this study, eight nonconserved residues with exposed surfaces and flexible conformations of the homotetrameric PGUS (ß-glucuronidase from Aspergillus oryzae Li-3) were identified. Single-point mutation into cysteine enabled the thiol-maleimide reaction and site-specific protein assembly using a two-arm polyethylene glycol (PEG)-maleimide crosslinker (Mal2 ). The Mal2 (1k) (with 1 kDa PEG spacer)-crosslinked PGUS assemblies showed low crosslinking efficiency and unimproved thermostability except for G194C-Mal2 (1k). To improve the crosslinking efficiency, a lengthened crosslinker Mal2 (2k) (with 2 kDa PEG spacer) was used to produce PGUS assembly and a highly improved thermostability was achieved with a half-life of 47.2-169.2 min at 70°C, which is 1.04-3.74 times that of wild type PGUS. It is found that the thermostability of PGUS assembly was closely associated with the formation of inter-tetramer assembly and intratetramer crosslinking, rather than the PEGylation of the enzyme. Therefore, the four-arm PEG-maleimide crosslinker Mal4 (2k) (with 2 kDa PEG spacer) was employed to simultaneously increase the inter-tetramer assembly and intratetramer crosslinking, and the resulting PGUS assemblies showed further improved thermostabilities compared with Mal2 (2k)-crosslinked assemblies. Finally, the application of PGUS assemblies with significantly improved thermostability to the bioconversion of GL proved that the PGUS assembly is a strong catalyst for glycyrrhizin (GL) hydrolysis in industrial applications.


Assuntos
Glucuronidase , Ácido Glicirrízico , Glucuronidase/química , Ácido Glicirrízico/metabolismo , Hidrólise , Catálise , Maleimidas , Polietilenoglicóis
2.
Biochemistry ; 62(14): 2202-2215, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37368361

RESUMO

Heparanase (HPSE) is the only mammalian endo-ß-glucuronidase known to catalyze the degradation of heparan sulfate. Dysfunction of HPSE activity has been linked to several disease states, resulting in HPSE becoming the target of numerous therapeutic programs, yet no drug has passed clinical trials to date. Pentosan polysulfate sodium (PPS) is a heterogeneous, FDA-approved drug for the treatment of interstitial cystitis and a known HPSE inhibitor. However, due to its heterogeneity, characterization of its mechanism of HPSE inhibition is challenging. Here, we show that inhibition of HPSE by PPS is complex, involving multiple overlapping binding events, each influenced by factors such as oligosaccharide length and inhibitor-induced changes in the protein secondary structure. The present work advances our molecular understanding of the inhibition of HPSE and will aid in the development of therapeutics for the treatment of a broad range of pathologies associated with enzyme dysfunction, including cancer, inflammatory disease, and viral infections.


Assuntos
Glucuronidase , Heparitina Sulfato , Animais , Heparitina Sulfato/química , Glucuronidase/química , Mamíferos/metabolismo
3.
Molecules ; 28(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37241884

RESUMO

Indoxyl-glucuronides, upon treatment with ß-glucuronidase under physiological conditions, are well known to afford the corresponding indigoid dye via oxidative dimerization. Here, seven indoxyl-glucuronide target compounds have been prepared along with 22 intermediates. Of the target compounds, four contain a conjugatable handle (azido-PEG, hydroxy-PEG, or BCN) attached to the indoxyl moiety, while three are isomers that include a PEG-ethynyl group at the 5-, 6-, or 7-position. All seven target compounds have been examined in indigoid-forming reactions upon treatment with ß-glucuronidase from two different sources and rat liver tritosomes. Taken together, the results suggest the utility of tethered indoxyl-glucuronides for use in bioconjugation chemistry with a chromogenic readout under physiological conditions.


Assuntos
Glucuronatos , Glucuronídeos , Ratos , Animais , Glucuronídeos/química , Glucuronidase/química
4.
Anal Chem ; 95(9): 4261-4265, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36802510

RESUMO

ß-d-Glucuronidase (GUS) plays a pivotal role in both clinical treatment assessment and environmental monitoring. Existing tools for GUS detection suffer from (1) poor continuity due to a gap between the optimal pH of the probes and the enzyme and (2) diffusion from the detection site due to lack of an anchoring structure. Here we report a novel GUS pH-matching and endoplasmic reticulum-anchoring strategy for GUS recognition. The new fluorescent probe tool was termed ERNathG, which was designed and synthesized with ß-d-glucuronic acid as the GUS-specific recognition site and 4-hydroxy-1,8-naphthalimide as a fluorescence reporting group, with a p-toluene sulfonyl as an anchoring group. This probe enabled the continuous and anchored detection of GUS without pH-adjustment for the related assessment of common cancer cell lines and gut bacteria. The probe's properties are far superior to those of commonly used commercial molecules.


Assuntos
Corantes Fluorescentes , Neoplasias , Humanos , Corantes Fluorescentes/química , Glucuronidase/química , Bactérias/metabolismo , Ácido Glucurônico
5.
ChemMedChem ; 18(4): e202200580, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36533564

RESUMO

Degradation of the extracellular matrix (ECM) supports tissue integrity and homeostasis, but is also a key factor in cancer metastasis. Heparanase (HPSE) is a mammalian ECM-remodeling enzyme with ß-D-endo-glucuronidase activity overexpressed in several malignancies, and is thought to facilitate tumor growth and metastasis. By this virtue, HPSE is considered an attractive target for the development of cancer therapies, yet to date no HPSE inhibitors have progressed to the clinic. Here we report on the discovery of glucurono-configured cyclitol derivatives featuring simple substituents at the 4-O-position as irreversible HPSE inhibitors. We show that these compounds, unlike glucurono-cyclophellitol, are selective for HPSE over ß-D-exo-glucuronidase (GUSB), also in platelet lysate. The observed selectivity is induced by steric and electrostatic interactions of the substituents at the 4-O-position. Crystallographic analysis supports this rationale for HPSE selectivity, and computer simulations provide insights in the conformational preferences and binding poses of the inhibitors, which we believe are good starting points for the future development of HPSE-targeting antimetastatic cancer drugs.


Assuntos
Antineoplásicos , Neoplasias , Animais , Humanos , Glucuronidase/química , Glucuronidase/metabolismo , Antineoplásicos/farmacologia , Mamíferos/metabolismo
6.
Chembiochem ; 24(4): e202200619, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36453606

RESUMO

1-Azasugar analogues of l-iduronic acid (l-IdoA) and d-glucuronic acid (d-GlcA) and their corresponding enantiomers have been synthesized as potential pharmacological chaperones for mucopolysaccharidosis I (MPS I), a lysosomal storage disease caused by mutations in the gene encoding α-iduronidase (IDUA). The compounds were efficiently synthesized in nine or ten steps from d- or l-arabinose, and the structures were confirmed by X-ray crystallographic analysis of key intermediates. All compounds were inactive against IDUA, although l-IdoA-configured 8 moderately inhibited ß-glucuronidase (ß-GLU). The d-GlcA-configured 9 was a potent inhibitor of ß-GLU and a moderate inhibitor of the endo-ß-glucuronidase heparanase. Co-crystallization of 9 with heparanase revealed that the endocyclic nitrogen of 9 forms close interactions with both the catalytic acid and catalytic nucleophile.


Assuntos
Iduronidase , Mucopolissacaridose I , Humanos , Iduronidase/química , Iduronidase/genética , Ácidos Urônicos , Glucuronidase/química , Mucopolissacaridose I/genética
7.
Int J Biol Macromol ; 220: 1532-1544, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36096258

RESUMO

Gut microbial ß-glucuronidases (GUSs) inhibition is a new approach for managing some diseases and medication therapy. However, the structural and functional complexity of GUSs have posed tremendous challenges to discover specific or broad-spectrum GUSs inhibitors using Escherichia coli GUS (EcoGUS) alone. This study first assessed the effects of twenty-one dietary flavones employing three Loop 1-type GUSs of different taxonomic origins, which were considered to be the main GUSs involved in deglucuronidation of small molecules, on p-nitrophenyl-ß-D-glucuronide hydrolysis and a structure-activity relationship is preliminarily proposed based on both in vitro assays and a docking study with representative compounds. EcoGUS and Staphylococcus pasteuri GUS showed largely similar inhibition propensities with potencies positively correlating with the total hydroxyl groups and those at ring B of flavones, while docking results revealed strong interactions developed via ring A and/or C. Streptococcus agalactiae GUS (SagaGUS) exhibited distinct inhibition propensities, displaying late-onset inhibition and steep dose-response profiles with most tested compounds. The α-helix in loop 1 region of SagaGUS which causes spatial hindrance but offers a hydrophobic surface for contacting with the carbonyl group on ring C of flavones is believed to be essential for the allosteric inhibition of SagaGUS. Taken together, the study with a series of flavones revealed varied preferences for GUSs belonging to the same Loop 1-type, highlighting the necessity of adopting multi-GUSs instead of EcoGUS alone for screening broad-spectrum GUSs inhibitors or tailoring the inhibition based on specific GUS structure.


Assuntos
Flavonas , Microbioma Gastrointestinal , Inibidores Enzimáticos/farmacologia , Escherichia coli/metabolismo , Flavonas/farmacologia , Microbioma Gastrointestinal/fisiologia , Glucuronidase/química , Glucuronídeos , Humanos , Relação Estrutura-Atividade
8.
Environ Sci Pollut Res Int ; 29(42): 64244-64251, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35918583

RESUMO

Arylsulfatase and ß-glucuronidase are the two substantial enzymes having a significant role in the cleavage of conjugated natural estrogens (C-NEs). The present study reports that arylsulfatase and ß-glucuronidase have been abundantly found in the digestive tracts of Cipangopaludina chinensis; in which, their corresponding activities were 60 and 5 U/g wet waste, respectively. The arylsulfatase from Cipangopaludina chinensis could show high activity at low temperatures. Hence, its activity still remained at 53.2% of maximal activity even at an extremely low temperature of 4 ℃; while the corresponding activities of arylsulfatase from Helix pomatia or activated sludge were less than 20% and 10%, respectively. The arylsulfatase and ß-glucuronidase from Cipangopaludina chinensis could efficiently cleave C-NEs suggesting that they could be alternative enzymes derived from Helix pomatia that are used for cleavage of conjugated compounds in environmental or biological sample analysis. Meanwhile, they might also be used to enhance the cleavage of C-NEs in municipal wastewater.


Assuntos
Arilsulfatases , Gastrópodes , Animais , Estrogênios , Estrogênios Conjugados (USP) , Trato Gastrointestinal , Glucuronidase/química , Caracois Helix , Esgotos , Águas Residuárias
9.
Anal Chem ; 94(19): 7012-7020, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35506678

RESUMO

Liver cancer is a primary malignant tumor with a very high fatality rate, which has seriously threatened human health and life. In normal hepatocellular lesions, ß-glucuronidase (GLU) activity in liver cancer tissues is significantly increased. Therefore, GLU has become one of the important biomarkers of primary liver cancer. Here, a series of fluorescent probes (DCDH, DCDCH3, DCDOCH3, and DCDNO2) for early diagnosis of liver cancer and auxiliary surgical resection were successfully synthesized. Since the electron-withdrawing group -NO2 connected to the probe DCDNO2 accelerates the rapid cleavage of the glycosidic bond, DCDNO2 exhibits superior fluorescence properties that are more sensitive and rapid than the other three probes DCDH, DCDCH3, and DCDOCH3 when detecting GLU. DCDNO2 has been well-applied in real-time fluorescent visualization imaging for the detection of GLU activity in liver cancer cells and tumor tissues. In addition, DCDNO2 has also been successfully used in the early diagnosis of liver cancer and real-time imaging to guide the surgical resection of liver cancer tumors. Therefore, DCDNO2 has great potential for development in bioclinical medicine for the early detection and treatment of liver cancer.


Assuntos
Corantes Fluorescentes , Neoplasias Hepáticas , Fluorescência , Corantes Fluorescentes/química , Glucuronidase/química , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia
10.
J Neurosci ; 42(19): 4016-4025, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35428698

RESUMO

Cognitive deficits are a major biomedical challenge-and engagement of the brain in stimulating tasks improves cognition in aged individuals (Wilson et al., 2002; Gates et al., 2011) and rodents (Aidil-Carvalho et al., 2017), through unknown mechanisms. Whether cognitive stimulation alters specific metabolic pathways in the brain is unknown. Understanding which metabolic processes are involved in cognitive stimulation is important because it could lead to pharmacologic intervention that promotes biological effects of a beneficial behavior, toward the goal of effective medical treatments for cognitive deficits. Here we show using male mice that cognitive stimulation induced metabolic remodeling of the mouse hippocampus, and that pharmacologic treatment with the longevity hormone α-klotho (KL), mediated by its KL1 domain, partially mimicked this alteration. The shared, metabolic signature shared between cognitive stimulation and treatment with KL or KL1 closely correlated with individual mouse cognitive performance, indicating a link between metabolite levels and learning and memory. Importantly, the treatment of mice with KL1, an endogenous circulating factor that more closely mimicked cognitive stimulation than KL, acutely increased synaptic plasticity, a substrate of cognition. KL1 also improved cognition, itself, in young mice and countered deficits in old mice. Our data show that treatments or interventions mimicking the hippocampal metabolome of cognitive stimulation can enhance brain functions. Further, we identify the specific domain by which klotho promotes brain functions, through KL1, a metabolic mimic of cognitive stimulation.SIGNIFICANCE STATEMENT Cognitive deficits are a major biomedical challenge without truly effective pharmacologic treatments. Engaging the brain through cognitive tasks benefits cognition. Mimicking the effects of such beneficial behaviors through pharmacological treatment represents a highly valuable medical approach to treating cognitive deficits. We demonstrate that brain engagement through cognitive stimulation induces metabolic remodeling of the hippocampus that was acutely recapitulated by the longevity factor klotho, mediated by its KL1 domain. Treatment with KL1, a close mimic of cognitive stimulation, enhanced cognition and countered cognitive aging. Our findings shed light on how cognition metabolically alters the brain and provide a plausible therapeutic intervention for mimicking these alterations that, in turn, improves cognition in the young and aging brain.


Assuntos
Glucuronidase , Longevidade , Envelhecimento , Animais , Cognição/fisiologia , Glucuronidase/química , Glucuronidase/metabolismo , Hidrolases/metabolismo , Proteínas Klotho , Masculino , Metaboloma , Camundongos
11.
Nat Commun ; 13(1): 136, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013263

RESUMO

Emerging research supports that triclosan (TCS), an antimicrobial agent found in thousands of consumer products, exacerbates colitis and colitis-associated colorectal tumorigenesis in animal models. While the intestinal toxicities of TCS require the presence of gut microbiota, the molecular mechanisms involved have not been defined. Here we show that intestinal commensal microbes mediate metabolic activation of TCS in the colon and drive its gut toxicology. Using a range of in vitro, ex vivo, and in vivo approaches, we identify specific microbial ß-glucuronidase (GUS) enzymes involved and pinpoint molecular motifs required to metabolically activate TCS in the gut. Finally, we show that targeted inhibition of bacterial GUS enzymes abolishes the colitis-promoting effects of TCS, supporting an essential role of specific microbial proteins in TCS toxicity. Together, our results define a mechanism by which intestinal microbes contribute to the metabolic activation and gut toxicity of TCS, and highlight the importance of considering the contributions of the gut microbiota in evaluating the toxic potential of environmental chemicals.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Carcinógenos/antagonistas & inibidores , Colite/prevenção & controle , Neoplasias Colorretais/prevenção & controle , Glucuronidase/antagonistas & inibidores , Inibidores de Glicosídeo Hidrolases/farmacologia , Triclosan/antagonistas & inibidores , Animais , Anti-Infecciosos Locais/química , Anti-Infecciosos Locais/metabolismo , Anti-Infecciosos Locais/toxicidade , Anticarcinógenos/química , Anticarcinógenos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biotransformação , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinógenos/química , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Colite/induzido quimicamente , Colite/enzimologia , Colite/microbiologia , Colo/efeitos dos fármacos , Colo/microbiologia , Colo/patologia , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Expressão Gênica , Glucuronidase/química , Glucuronidase/genética , Glucuronidase/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Triclosan/química , Triclosan/metabolismo , Triclosan/toxicidade
12.
J Anal Toxicol ; 46(6): 689-696, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34401904

RESUMO

Next generation ß-glucuronidases can effectively cleave glucuronides in urine at room temperature. However, during the discovery studies, additional challenges were identified for urine drug testing across biologically relevant pH extremes and patient urine specimens. Different enzymes were evaluated across clinical urine specimens and commercially available urine control matrices. Each enzyme shows distinct substrate preferences, pH optima, and variability across clinical specimens. These results demonstrate how reliance on a single glucuronidated substrate as the internal hydrolysis control cannot ensure performance across a broader panel of analytes. Moreover, sample specific urine properties compromise ß-glucuronidases to varying levels, more pronounced for some enzymes, and thereby lower the recovery of some drug analytes in an enzyme-specific manner. A minimum of 3-fold dilution of urine with buffer yields measurable improvements in achieving target pH and reducing the impact of endogenous compounds on enzyme performance. After subjecting the enzymes to pH extremes and compromising chemicals, one particular ß-glucuronidase was identified that addressed many of these challenges and greatly lower the risk of failed hydrolyses. In summary, we present strategies to evaluate glucuronidases that aid in higher accuracy urine drug tests with lower potential for false negatives.


Assuntos
Glucuronidase , Detecção do Abuso de Substâncias , Glucuronidase/química , Glucuronídeos/química , Humanos , Hidrólise , Detecção do Abuso de Substâncias/métodos
13.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34576249

RESUMO

Human serum albumin (HSA) is the most abundant protein in plasma, contributing actively to oncotic pressure maintenance and fluid distribution between body compartments. HSA acts as the main carrier of fatty acids, recognizes metal ions, affects pharmacokinetics of many drugs, provides the metabolic modification of some ligands, renders potential toxins harmless, accounts for most of the anti-oxidant capacity of human plasma, and displays esterase, enolase, glucuronidase, and peroxidase (pseudo)-enzymatic activities. HSA-based catalysis is physiologically relevant, affecting the metabolism of endogenous and exogenous compounds including proteins, lipids, cholesterol, reactive oxygen species (ROS), and drugs. Catalytic properties of HSA are modulated by allosteric effectors, competitive inhibitors, chemical modifications, pathological conditions, and aging. HSA displays anti-oxidant properties and is critical for plasma detoxification from toxic agents and for pro-drugs activation. The enzymatic properties of HSA can be also exploited by chemical industries as a scaffold to produce libraries of catalysts with improved proficiency and stereoselectivity for water decontamination from poisonous agents and environmental contaminants, in the so called "green chemistry" field. Here, an overview of the intrinsic and metal dependent (pseudo-)enzymatic properties of HSA is reported to highlight the roles played by this multifaced protein.


Assuntos
Química Verde , Espécies Reativas de Oxigênio , Albumina Sérica Humana/química , Animais , Antioxidantes/química , Aspirina/química , Biomarcadores , Catálise , Frutose-Bifosfato Aldolase/metabolismo , Glucuronidase/química , Heme/química , Humanos , Íons , Ligantes , Peroxidação de Lipídeos , Conformação Molecular , Fosfopiruvato Hidratase/química , Ligação Proteica , Ratos
14.
FEBS J ; 288(16): 4918-4938, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33645879

RESUMO

In this study, we have isolated the novel enzyme 4-O-α-l-rhamnosyl-ß-d-glucuronidase (FoBGlcA), which releases α-l-rhamnosyl (1→4) glucuronic acid from gum arabic (GA), from Fusarium oxysporum 12S culture supernatant, and for the first time report an enzyme with such catalytic activity. The gene encoding FoBGlcA was cloned and expressed in Pichia pastoris. When GA was subjected to the recombinant enzyme, > 95% of the l-rhamnose (Rha) and d-glucuronic acid in the substrate were released, which indicates that almost all Rha binds to the glucuronic acid at the end of the GA side chains. The crystal structure of FoBGlcA was determined using a single-wavelength anomalous dispersion at 1.51 Å resolution. FoBGlcA consisted of an N-terminal (ß/α)8 -barrel domain and a C-terminal antiparallel ß-sheet domain. This configuration is characteristic of glycoside hydrolase (GH) family 79 proteins. A structural similarity search showed that FoBGlcA mostly resembled GH79 ß-d-glucuronidase (AcGlcA79A) of Acidobacterium capsulatum; however, the root-mean-square deviation value was 3.2 Å, indicating that FoBGlcA has a high structural divergence. FoBGlcA had a low sequence identity with AcGlcA79A (19%) and differed from other GH79 ß-glucuronidases. The structures of FoBGlcA and AcGlcA79A also differed in terms of the loop structure location near subsite -2 of their catalytic sites, which may account for the unique substrate specificity of FoBGlcA. The amino acid residues involved in the catalytic activity of this enzyme were determined by evaluating the activity levels of various mutant enzymes based on the crystal structure analysis of the FoBGlcA reaction product complex. DATABASE: Atomic coordinates and structure factors (codes 7DFQ and 7DFS) have been deposited in the Protein Data Bank (http://wwpdb.org/).


Assuntos
Fusarium/enzimologia , Glucuronidase/química , Glucuronidase/metabolismo , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Glucuronidase/genética , Goma Arábica/química , Goma Arábica/metabolismo , Concentração de Íons de Hidrogênio , Filogenia , Conformação Proteica , Temperatura
15.
Biotechnol Bioeng ; 118(5): 1962-1972, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33559890

RESUMO

Glycoside hydrolase family 2 (GH2) enzymes are generally composed of three domains: TIM-barrel domain (TIM), immunoglobulin-like ß-sandwich domain (ISD), and sugar-binding domain (SBD). The combination of these three domains yields multiple structural combinations with different properties. Theoretically, the drawbacks of a given GH2 fold may be circumvented by efficiently reassembling the three domains. However, very few successful cases have been reported. In this study, we used six GH2 ß-glucuronidases (GUSs) from bacteria, fungi, or humans as model enzymes and constructed a series of mutants by reassembling the domains from different GUSs. The mutants PGUS-At, GUS-PAA, and GUS-PAP, with reassembled domains from fungal GUSs, showed improved expression levels, activity, and thermostability, respectively. Specifically, compared to the parental enzyme, the mutant PGUS-At displayed 3.8 times higher expression, the mutant GUS-PAA displayed 1.0 time higher catalytic efficiency (kcat /Km ), and the mutant GUS-PAP displayed 7.5 times higher thermostability at 65°C. Furthermore, two-hybrid mutants, GUS-AEA and GUS-PEP, were constructed with the ISD from a bacterial GUS and SBD and TIM domain from fungal GUSs. GUS-AEA and GUS-PEP showed 30.4% and 23.0% higher thermostability than GUS-PAP, respectively. Finally, molecular dynamics simulations were conducted to uncover the molecular reasons for the increased thermostability of the mutant.


Assuntos
Glucuronidase , Domínios Proteicos/genética , Engenharia de Proteínas/métodos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucuronidase/química , Glucuronidase/genética , Glucuronidase/metabolismo , Humanos , Simulação de Dinâmica Molecular
16.
Mol Divers ; 25(2): 995-1009, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32301032

RESUMO

The ß-glucuronidase, a lysosomal enzyme, catalyzes the cleavage of glucuronosyl-O-bonds. Its inhibitors play a significant role in different medicinal therapies as they cause a decrease in carcinogen-induced colonic tumors by reducing the level of toxic substances present in the intestine. Among those inhibitors, bisindole derivatives had displayed promising ß-glucuronidase inhibition activity. In the current study, hydrazone derivatives of bisindolymethane (1-30) were synthesized and evaluated for in vitro ß-glucuronidase inhibitory activity. Twenty-eight analogs demonstrated better activity (IC50 = 0.50-46.5 µM) than standard D-saccharic acid 1,4-lactone (IC50 = 48.4 ± 1.25 µM). Compounds with hydroxyl group like 6 (0.60 ± 0.01 µM), 20 (1.50 ± 0.10 µM) and 25 (0.50 ± 0.01 µM) exhibited the most potent inhibitory activity, followed by analogs with fluorine 21 (3.50 ± 0.10 µM) and chlorine 23 (8.20 ± 0.20 µM) substituents. The presence of hydroxyl group at the aromatic side chain was observed as the main contributing factor in the inhibitory potential. From the docking studies, it was predicted that the active compounds can fit properly in the binding groove of the ß-glucuronidase and displayed significant binding interactions with essential residues.


Assuntos
Glicoproteínas , Hidrazonas , Indóis , Glucuronidase/antagonistas & inibidores , Glucuronidase/química , Glicoproteínas/síntese química , Glicoproteínas/química , Hidrazonas/síntese química , Hidrazonas/química , Indóis/síntese química , Indóis/química , Simulação de Acoplamento Molecular
17.
Neuro Endocrinol Lett ; 41(2): 69-75, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33185993

RESUMO

Klotho is a transmembrane protein with a wide spectrum of activity. The human Klotho gene shows 86% amino acid identity with the mouse protein. Many important pleiotropic functions of the Klotho protein have been revealed. Amongst them, there is a regulation of nitric oxide production, suppression of oxidative stress and inflammation, influence on the insulin-like growth factors and fibroblast growth factors signaling, modulation of calcium and phosphate metabolism, synthesis of vitamin D and other. Two forms of the Klotho protein are known. The secreted form strongly inhibits the oxidative stress, and, in humans, is more dominant than the membrane form. Studies on a mouse model resulted in the finding of the anti-aging effect of the Klotho protein. This activity is mainly associated with the suppression of oxidative stress, as well as it could be related to neuroprotective, cardioprotective, and metabolic functions.It might be speculated that Klotho, regarded as a neuroprotective factor, may have therapeutical applications in the future in the treatment of demyelinating and neurodegenerative disorders, especially multiple sclerosis (MS) and Alzheimer's disease (AD). The Klotho through inhibition of oxidative stress possesses cardioprotective properties. Of note, one functional variant of Klotho is a risk factor for coronary disease as well as some nucleotide polymorphisms are associated with carotid arteriosclerosis. Moreover, the Klotho protein can inhibit Angiotensin II-induced cardiomyocyte hypertrophy. All those effects indicate that the Klotho protein may be useful in the therapy of heart failure and hypertension. Undoubtedly, metabolic disturbances play an important role in the pathogenesis of many neurodegenerative and cardiovascular diseases. The metabolic effects of the Klotho protein are strongly connected with its neuroprotective and cardioprotective activity. This protein affects adipogenesis, metabolism of glucose and lipids as well as calcium-phosphate system by influence on the activity of fibroblast growth factors (FGF19, FGF23, FGF21). Finally, it has been revealed that the Klotho protein has antitumor activity. Besides, the FGF-Klotho system may have a role in longevity and aging-related disorders.


Assuntos
Envelhecimento/fisiologia , Doenças Cardiovasculares/metabolismo , Glucuronidase/fisiologia , Neuroproteção/fisiologia , Animais , Doenças Cardiovasculares/genética , Fator de Crescimento de Fibroblastos 23 , Glucuronidase/química , Glucuronidase/genética , Glucuronidase/metabolismo , Humanos , Proteínas Klotho , Camundongos , Neoplasias/metabolismo
18.
Chem Commun (Camb) ; 56(89): 13780-13783, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33073275

RESUMO

A synthetic heparan sulfate disaccharide has been assessed as a fluorogenic heparanase substrate, enabling enzyme turnover and inhibition kinetics measurements despite slow turnover. Crystal structures with human heparanase also provide the first ever observation of a substrate in an activated 1S3 conformation, highlighting previously unknown interactions involved in enzymatic processing. Our data provide insights into the heparanase catalytic mechanism, and will inform the design of improved heparanase substrates and inhibitors.


Assuntos
Dissacarídeos/química , Glucuronidase/química , Heparitina Sulfato/química , Catálise , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato
19.
J Biol Chem ; 295(52): 18614-18624, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33127645

RESUMO

Infiltration of peripheral immune cells after blood-brain barrier dysfunction causes severe inflammation after a stroke. Although the endothelial glycocalyx, a network of membrane-bound glycoproteins and proteoglycans that covers the lumen of endothelial cells, functions as a barrier to circulating cells, the relationship between stroke severity and glycocalyx dysfunction remains unclear. In this study, glycosaminoglycans, a component of the endothelial glycocalyx, were studied in the context of ischemic stroke using a photochemically induced thrombosis mouse model. Decreased levels of heparan sulfate and chondroitin sulfate and increased activity of hyaluronidase 1 and heparanase (HPSE) were observed in ischemic brain tissues. HPSE expression in cerebral vessels increased after stroke onset and infarct volume greatly decreased after co-administration of N-acetylcysteine + glycosaminoglycan oligosaccharides as compared with N-acetylcysteine administration alone. These results suggest that the endothelial glycocalyx was injured after the onset of stroke. Interestingly, scission activity of proHPSE produced by immortalized endothelial cells and HEK293 cells transfected with hHPSE1 cDNA were activated by acrolein (ACR) exposure. We identified the ACR-modified amino acid residues of proHPSE using nano LC-MS/MS, suggesting that ACR modification of Lys139 (6-kDa linker), Lys107, and Lys161, located in the immediate vicinity of the 6-kDa linker, at least in part is attributed to the activation of proHPSE. Because proHPSE, but not HPSE, localizes outside cells by binding with heparan sulfate proteoglycans, ACR-modified proHPSE represents a promising target to protect the endothelial glycocalyx.


Assuntos
Acroleína/farmacologia , Isquemia Encefálica/patologia , Endotélio Vascular/patologia , Glucuronidase/metabolismo , Glicocálix/patologia , AVC Isquêmico/patologia , Sequência de Aminoácidos , Animais , Isquemia Encefálica/etiologia , Isquemia Encefálica/metabolismo , Sulfatos de Condroitina/metabolismo , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Glucuronidase/química , Glucuronidase/genética , Glicocálix/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Hialuronoglucosaminidase/metabolismo , AVC Isquêmico/etiologia , AVC Isquêmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fotoquímica , Conformação Proteica
20.
Acta Biochim Pol ; 67(3): 409-415, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32730702

RESUMO

Bisphenol A (BPA) is classified as an endocrine disruptor (ED) and it can interact with variety of hormone receptors leading to hormonal disruption and increased risk of various adverse health effects. Reducing human exposure to BPA is one of the main challenges of public health, as it is constantly present in daily life. A low-cost and commonly applied method to enable determination of BPA in the patient's body has yet to be developed. Currently available techniques are expensive, time-consuming, and require access to highly equipped analytical chemistry laboratories. Here we describe a fast and cheap engineered lateral flow assay of our design, to detect of BPA in urine samples. The technology not only provides an opportunity to perform rapid medical diagnostics without the need for an access to the central laboratory but also a means for self-diagnosis by the patient. The addition of ß-glucuronidase improves the sensitivity of detection as it releases the free BPA from glucuronide complexes in urine. This invention may become a demonstrated analytical means for lowering human exposure to BPA and probably also to other EDs and consequently, may be useful in decrease of the risk for several lifestyle diseases.


Assuntos
Anticorpos/química , Compostos Benzidrílicos/química , Compostos Benzidrílicos/urina , Disruptores Endócrinos/química , Disruptores Endócrinos/urina , Fenóis/química , Fenóis/urina , Adolescente , Adsorção , Adulto , Anticorpos/imunologia , Compostos Benzidrílicos/imunologia , Criança , Pré-Escolar , Cromatografia Líquida , Colódio/química , Disruptores Endócrinos/imunologia , Ensaio de Imunoadsorção Enzimática/economia , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Glucuronidase/química , Glucuronídeos/química , Voluntários Saudáveis , Humanos , Masculino , Membranas Artificiais , Fenóis/imunologia , Saúde Pública/métodos , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...